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Schematic energy level for a chromophore. The electronic states are repre-
sented by solid horizontal lines and the vibronic states are represented by
dotted horizontal lines. S; represents a singlet state and T; represents a
triplet state. The photon absorption excitations are represented by solid
vertical lines, and the decay processes are represented by wavy lines. The
absorption coefficients o;; and the decay constants k;; are described in the
text. The physical values used for our calculations are: g, = 2.4 x 10~ ¥¢m?,
012 = 3.0x107em?, o34 = 4.8x 107 em?, ki = 0.144ns1, kyy = 1.0ps™ !,
k13 = 77.8ms"1, k30 = 50.0m3’1, k43 = 1.0p8_1, and kll) kgg, k33 are due to
vibrational decays which are assumed to be instantaneous. . .. .. .. ...
Space-Time grid for pulse propagation. Squares represent coordinates where
pulse is calculated and circles represent coordinates where carrier densities are
calculated. . .. . ...
Analytic and numerical solution for the fundamental soliton propagation. The

solid line shows the analytic solution and the circles show the numerical solution. 20
Relative error of and numerical solution for the fundamental soliton propagation. 21



‘Numerical study of short optical pulse
propagation in nonlinear reverse
saturable absorbers

1 INTRODUCTION

Recent developments in short pulse laser systems have introduced growing studies in the
problem of ultra short pulse propagation in nonlinear media. Competitions among the effects
of nonlinearity, diffraction, and group velocity dispersion (GVD) give rich spatiotemporal
phenomena such as self-focusing[1], self-defocusing, and pulse splitting. Understanding of
short pulse propagation is very important for protection of human eyes and optical equip-
ment from high power laser pulses. Optical limiters are needed that give high transmittance
at low input intensities and low transmittance at high input intensities. There are vari-
ous mechanisms that result from nonlinear optical responses such as nonlinear absorption,
nonlinear scattering and nonlinear refraction[2]. Desirable properties for optical limiting
candidates include, a high linear transmittance, a potentially low limiting threshold, a rapid
response of picoseconds or faster, a broad spectral response, and a large dynamic range.
Some semiconductors, gases and liquid crystals are used as optical limiting materials[3, 4].
Liquid crystals exhibit high refractive nonlinearities but low response time (nanoseconds).
Chromophores exhibiting nonlinear absorption, such as reverse saturable absorption (RSA),
are under consideration for optical limiting applications[5, 6, 7]. In a molecular system,
RSA arises when the excited state absorption cross section is larger than the ground state
absorbtion cross section. The process is modeled by several vibronically broadened elec-
tronic energy levels. The general situation involves a five level system. The energy states
included are three levels of the singlet state coupled to two levels of an excited triplet state.
The mechanism of RSA is described in terms of simple rate equations coupled to a one-
dimensional propagation equation of the optical pulse intensity. Figure 1 shows the energy
level diagram for the five-state model. Other materials and mechanisms have been used such
as fullerenes[8, 9], carbon black suspension[10, 11}, and two-photon absorption[12, 13]. While
the main material studied in this paper is RSA, these materials are usually incorporated in
a host material. With the recent introduction of novel high power lasers, the propagation
of light in nonlinear materials is often subject to various phenomena such as self-focusing or
self-phase modulation[14, 15, 16, 17, 18]. These effects are just beginning to be studied in
RSA materials. Therefore, in order to study these effects we derived an equation[19] for the
propagation of the electromagnetic field coupled to the rate equations because the traditional
‘equations, which use only the pulse intensity, cannot answer these more detailed questions.
Yet this equation cannot be solved analytically, therefore in this report we use numerical




methods. The principle numerical method is the split-step beam propagation method (BPM)
that is coupled to a finite difference technique. One significant result is that, under certain
circumstances, self-focusing can enhance the power limiting properties of RSA materials.

2 NONLINEAR WAVE EQUATION

From Maxwell’s equations we obtain the following wave equation

(v2 - i—a—z—) B - 2 py =0, (1)

c? Ot? €gc? Ot?

where we assume that V- £ = 0 and E || P. The electric polarization can be expressed as
a sum of two parts such as the linear part P, and the nonlinear part Py,

P(7,t) = B(F,t) + Pu(7,1), (2)
and the linear part is related to the electric field by the following relation
t
P(7t) = ¢ / Xt — 1) E(F¢)dt. (3)
Then the wave equation in the frequency domain becomes
2 2
2 w o~ w =L
[V + e(w)c—Q} E(F,w) + 60713"[(7",&1) =0, (4)
where
€w) = 1+x(w) (5)
EfFw) = / E(F, t)e~tdt, (6)

Pu(fw) = /_:Pn,(ﬁt)e‘i“"dt. (7)

In the slowly varying envelope approximation, it is useful to separate the rapidly varying
part of the electric field as

E(Ft) = A(f t)eorwot L (8)
Pu(7,t) = B(ft)ekorwot Lo (9)
and A and B are slowly varying envelopes which satisfies the following conditions
0A 0B
kolA ko|B 1
| <alal, 22| < hlB o

B
E) < wolB, ’ (11)

0
,E <<LLIO|A|, ‘
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where z; = z, y, z. In the frequency domain, the electric field and the nonlinear polarization
become

E(f,w) =

Fw— wo)e-{»ikoz + fi*(f’,w + wo)e—ikoz’ (12)
]E’nl(F,w) = w

(7;»’ _ wo)e-t-ikgz + B*(F,w + wo)e—ikoz. (13)
Then the wave equation becomes

o (O o\ WP W B
Vit {5, +iko) +ew) | AFw—wo) + —5B(F,w —w) = 0, (14)

c €oC2

where V3 = 6%/0z% + 8%/3y? and we assume that e{*>=“t) terms and e~i{**~%9 terms are

separable. Defining k(w) = \/e(w)w/c we get the Taylor series expansion of k(w) and w?
around wy. By inverse Fourier transformation, we obtain the following wave equation in the
time domain

o .\ (& km 2\ . 1 (.8 2
[Vi + (-6; +zko) + (Z _n('w_‘ﬁ (ﬁ%) ) } A(7t) + 60—65 (Z-a—t +w0) B(7,t) =0,

n=0

(15)
where 5 h(w)
™) () = w
k ((U()) Om e (16)
Defining the terms
HW%)—kyH%, (17)
ED(wy) = ky+ z%i (18)
we obtain the operator
. Oy (03] k(n) (wo)
.D(U.Io) = Z_i- - —2—8,: ngz ol (19)
Using Eq. (17-19), the wave equation can be expressed as
8 o \(d 8 .. 1 (8
2 | =+2iky—ky—+iD | | — ——iD)| AT, t)+—[i— 7 1) =0.
[V__L+ (az+ 1Ko klat+2 ><3z+k18t )j, (T, )+6002 (’Lat+w0) B(’f‘,t) 0 (20)
In the moving reference frame defined by, T =1t — k2, £ = z, the derivatives become
0 0 0
0 -2 (21)

9z 8 o Bt ol
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Then the wave equation becomes

0 0

2
{v'ﬁ <ﬁ+2iko—2k1—+z’z‘)) (—— ")}A(f‘, T)+i (i—a—-f-wo) B(7,T)=0.

0§ or o€ oT

€oC?

Reordering the terms

| o . %D 2% . 9 i 0 ko
2iko— 2k = iko— ok 2 o (1422 g (Ko
o= =2k ot Y mor  Mar ”‘"(”m 6T>+2 (wo kl)

and using Eq (23) in Eq (22), we obtain

s it (14 22V (2 ZipM a8 (1422 g
[VL + 2iko (1 + o 6T> (af D)] AR T) + e <1 + o 3T B(7,T)

2 it ) 2112 n] e
“[BE“D“(wo ’“1) aT] [36 D]A(”)'

From the definition of k(w), we obtain

Ok _ wive Ve
dw ¢ Ow ¢’
Ow w/ € Wo
where . 3
wo Ow w

If the right-hand side of Eq. (24) is very small, then Eq. (24) becomes

L i 8\ o, i w? i 0
~|iD+— (14 —=] V2| A+—-20 (1422 )B
¢ +2k0< +(J.)08T) L +2k0€0C2( + )B

0A

0¢

If we assume

then Eq. (28) becomes

3AN [64)) _kz 32 kg 83 1 ( 1 a)vi] 1 wg <1 i 0

E3 w 0T

5 "o 6 o 2k

oT’

(22)

(23)

(24)

(25)

(26)



3 NONLINEAR POLARIZATION

If we consider only the third-order nonlinear effects governed by x{). then the nonlinear
polarization becomes

i t t
Pu(t)=e [ [ [ X0 = b1t = to,t ~ 2B, 0) BT, ) E(, t)dty, dba, dts. (32)
—00 /=00 J -0
We further assume the following functional form for the third-order susceptibility,
XO(E = ti,t —to,t — t3) = XOR(E — 1,)6(t — £2)6(t — t3), (33)

where §(t) is the delta function and R(t) is the nonlinear response function normalized as
JZ% R(t)dt = 1. Then the nonlinear polarization is given by

4
Pu(ft) = oxPE(71) [ R(t~t) B, ), (34)

-0

here we assumed E || P,;. If the response function R(t) is nearly instantaneous, the we can
apply the following Taylor series expansion '

/t R(t— ) EX(7 t)dt; = /t R(t— 1) [HZ(i:_t—)a ]dt1E2( )

—c0 Y = ot
0\ .
~ 1= Teg | B2 0), (35)
where T = [;° tR(t)dt. Then the nonlinear polarization becomes
0
Pnl('f_", t) ~ 60X(3)E(7—", t) (1 - TRat) E2(7_", t) (36)

From the slowly varying envelope approximation, we obtain the following equations

E2 — A2e2i(koz—wot) + 2|A|2 + (A*)26—2i(koz—wot)’ (37)

E: ) 8 . E;
i(koz—wot) . 2 9 2 —2i(koz—wot) - *\2
B e (—Ot_2wo>A + _ItAI +e | (—t—i—Zsz) (A")*, (38)

E<1 T,%) E? = gbilkor—unt) 4 {1 - (3 - 2in) } A?

ot

+ 6i(koz—wot) [A* {1 —_ TR (—aa—t —_— in()) } A2 +2A (1 — TR ) IA]2:'
+ e—i(koz—wot) I:A {1 _ TR (__aa_t + 22&]0)} (A*)2 + 2A4* (1 — TR ) |Al2]
+ e—3i(k02—UJ0t)A* {1 - (% + 2’in) } (A*)2~ (39)

5]




Assume that each e(koz=wof) (n =3 1 —1, — 3) term can be separated from each other,

then
O0A 0A*

B =~ egx® A [ (3 4 2iweTR)|A]2 — 4T A 57— 2TA
If Tr = 0, then B = 3¢)x®|4|?A considering to the Kerr nonlinearity. Using Eq. (40) in
Eq. (20) we can obtain wave equation which expressed in terms of A(7, T only.

(40)

4 SCALED NONLINEAR WAVE EQUATION

For cylindrically symmetric system, we define the following dimensionless parameters

§ _TL T A

= =, ==, T=— = —, 41
L P To Ty Q Ag (41)

where Ly, ro, To, Ao are given by the input pulse and r; = /zZ + y2. Using Eq. (41) the
wave equation Eq. (31) can be rewritten as

0Q [ o0 ke 07 ks & i AR i W@ A
: B Faciaa-end Gl — | 5VHQ+—-2t 20
oy on { 2 22T02 or? N 675 Or3 N 2k wolodr) 13 * @+ 2kg c? B, (42)

and B’ is given as

y y a a *
v (1+woZT08 ) {(3+2W0TR)|Q12—4—Q*.§__ ——Q Q@ }
~ 3Q [(1+§ionR)lQ!2+(w:TO 2:) {2 *g_chr aac?r }] )

where 8?/072 and higher order terms are neglected. Now we set L4 = kor2/2 and introduce
the following parameters

kz kg 1 TR . 3 ng(ii) ]A0|2

F=apLlyg, 7= Tngf, o= T3Ldf, U:m’ TR= 7,” P73 e Ly. (44)
Then Eq. (42) becomes
8Q T iv& 608 i 9\ _,
m {‘5“55‘5%&3* L-wog ) Vey @
0
sip{ 1+ 32) 0P+ om0 2405 ) e



Next we define two linear operators Dg,(7) and Dy () and one nonlinear operator N (1)
such as

iy ? 6§80 T

Palr) = 22 30 T
a(7) 2972 683 2 (46)
~ ) .0 0
Ddf(T) = Z (1 - 20'8—7_) Vp, (47)
N(1) = ip|Q (48)
In the frequency domain, the linear operators become
ﬁds(w) = gw2 -+ 2—65*&13 - —12:, ‘ (49)
Dy(w) = +(1-ow)V, (50)

4

here we use F (5‘%) = (~4w)" and w is a dimensionless angular frequency which correspond-
ing the dimensionless time 7.

5 RSA RATE EQUATION

Rate equations for a five-level RSA are

%)- = "%No + kyoNy + k3o N3, (51)
Qéle = %Ng - (% + k1o + k13) N1 + koy Ny, (52)
%2 - %N — b Ny, (53)
QéVTf" - _(%iz_j + kso) N5 + ki3, + kys N, (54)
U Zf—st ~ ks, (55)

where Nj is the electron number density of the state j, ojx is the absorption cross-section
for electron pumping from the state 5 to the state k& and kji is the decay rate from the state
J to the state k. The assignment of the electron densities, Nj;, in Fig. 1 is as follows: Nj
corresponds to the ground level of the singlet state, Sp; IV; corresponds to the first excited
level of the singlet state, S1; N, corresponds to the second excited level of the singlet state,
S2; N3 corresponds to the first excited level of the triplet state, T}; and N, corresponds to
the second excited level of the triplet state, 7. In these materials, the total number, Nr,

7




of electrons is conserved such that Ny + N, + Ny 4+ N3 + Ny = Np. The initial population
at z = 0 (i.e. before the pulse is incident on the RSA material) is given by Ny = Ny and
Ni =Ny =N; =Ny =0. The optical pulse has an input energy flux density I with angular
frequency wy, % is Planck’s constant and I /hwy is the input photon flux.

The propagation equation of the energy flux density in the moving frame becomes

oI
5-5- = —(001N0 + O"]QN] -+ 0'34N4)I. (56)
If we assume I = afiwg|A|? and « is a constant, then
0A 1
5{ = —-2-(0'01NO + 0'12N1 + 034N4)A. (57)

We can rewrite the rate equations and the propagation equation such as

ON RO PO SIS I -
—_— = N = —H| N = 2
— =N [G+ i J (G +alAPA] A, (58)
0A 1, -
% " —5(@-N)A4, (59)
where
N() 0 k()] 0 k30 0 —001 0 0 0 0
. : N1 R 0 —'(k10+k13) kgl ) 0 0 R Op1 —012 0 0 0
N= N2 y G= 0 0 —kgl 0 0 ,H: 0 019 0 0 0 , (60)
N3 0 klg : 0 —kg(] k43 0 0 0 —034 0
N4 0 0 0 0 —k43 0 0 0 O34 0
and .
5'N=001N0+012N1 +O’34N3. (61)
Let’s introduce a following dimensionless parameter
N:
N, = —-.
- (62

Using dimensionless parameters defined in Eq. (41) and Eq. (62) the rate equations and the
propagation equation become

OR - 1

= = T [G+a|A0|2}Q}2H] X, (63)
0Q _  LyNr . -

o 5 (%) Q. (64)



Eq. (57) describes the propagation of a plane wave. However, for a three-dimensional pulse
propagation in RSA material imbedded in a nonlinear medium, the pulse propagation equa-
tion becomes _

0Q

8_77 = [[)ds + .[)éf"i‘ N + Nr.sa] Q, (65)

where Ny, = —& - &‘LdiT /2 and the pulse propagation equation is coupled to the following
rate equations

8& _ A 2112 7r] .
5 =T G +al4oPlQPA] & (66)

6 SPLIT-STEP METHOD
The nonlinear equation Eq. (65) can be expressed as

0Q 1 o~
o [Dds + Dy + an] Q, (67)

where an =N+ Nrsa. AThe solution is described by

n+An
Qn+An) = exp ( /ﬂ (Das + Dy + Nyy)dn ) Q(n)

exp ((Dar+ D)+ [ N ) @t (68

Generally linear operators bds, Ddf and nonlinear operator an do not commute. In order
to solve the propagation equation, we use the symmetric split-step method given by

- - +4An o U “ .
Q(n+ An) ~ e%iDdfe%'LDdsef: " Nordy e%’lDdse%'lDde( ) (69)

Linear operators .Ddf and Dy, are solved in the frequency domain and the nonlinear operator
an is solved in the time domain. The nonlinear operator N, is solved using the trapezoid
rule and then iterated until the solution converges

[T @] '~ BT {10 + R Q0 + A} (70)

' In the first iteration N [Q(n + An)] is set equal to Ny [Q(n)] to obtain an initial value for
Q(n+ An) which is then used for Ny, [Q(n + An)]. The process is repeated until convergence
is achieved.




7 NUMERICAL CALCULATION

We consider a discrete time and space grid such as
TT, N, p P (71)

For the fast Fourier transformation (FFT) algorithm, there must be exactly an integral power
of 2 points equally spaced in the time domain

Ti = AT + Tin. (72)

The 7, and p; grids may be dynamically adjusted.

7.1 Diffraction Operator

The linear diffraction term in the the frequency domain is given by
20
83 X(@)V;Q(n, p,w), (73)

where Q(n, p,w) is the Fourier transform of Q(n,p,7), x(w)=1i(1—-ow)/4 and V2 is the
radial Laplacian with azimuthal symmetry

10 &
Vie - 4.
Ay + o7 (74)
This equation is solved using the following finite difference scheme.
P A ;1+1 N
99 _ @ Q” (75)
on An
and the Crank-Nicholson method
2 A =y 25
Vi pw) = 5 (V00 p,w) + VQ(m + A, p,0)) (76)
~ 1 1 /=~ ~ 1 ~
27 - = n e m . ;
VoQ(h, pyw) = P .4_A_,o< i.j+1 i,j~1) +_2——_(Ap)2 ( ij+1 2Q +Q1] 1) (77)

where Ap = p;;, — p;. Then

n+1 ‘(1,_ ( ) .
’ An "= dp;Ap THH 2+ Qi — Qi
( 1) ol n An An An
+2(Ap)2 [Qi:;r'l{l Q +l Qi,;_ll Qz J+1 2Qi,j + Qi,j—-l]' (78)

10



This equation can be rewritten as

U jmr @2, + U3 QP + UL, P = Vi@ + V0 + Vi Qi (79)
where
— M_A_n i_i (80)
331 20p \2p; Ap)’
i X(wi)Aﬂ
o= 1
Uz + (Bp)? (81)
; x(w))An (1 1
5J+1 2Ap <2p] Ap) ’ (8 )
; X(w)An (1 1
yi o= SIS - 2
7:7-1 2Ap (ij Ap b) (83)
i x(w;)An
V;‘,j = 1 (Ap)2 ’ (84)
; X(wi))An (1 1
vi o= Xanf L 1 85
= S (1), ®)

which is valid for the interior points 0 < p; < pmaz. For on axis points (p = 0), the following
facts are used; (1) for cylinderically symmetric systems 8Q/8p = 0 at p = 0, and (2) the
Maclaurin expansion for 8Q/dp is used to define Vf, at p = 0 such as

Q) = QO+ 0)+7Q"0) + -, (56)
lim %Q'(p) - Q"(0) (87)

Therefore, at the origin (p = 0), the cylindrical heat equation becomes

oQ 6%Q '
— =2 —_— 88
oy = 2XW) o (88)
Using the finite difference scheme described previously leads to
o —Qh _ 2x(w) QRN+, -G +Q2f51_ e+ Q7. — QY (89)
An Pi+1—Pj—1 Pj+1—P; Pi+1— Pj

At p =0, i.e,, j = 0 we can imagine extending the boundary to the left by a distance p_,
which introduces the fictitious quantity Q7_,- This quantity can be eliminated using the

fact that _ . -
0Q t— Qe 5 5
i =0, ————27 =, i =Qr_. 90
op p=0 P1 = p-1 ! 1 0

11




Therefore, if we assume that p; = p_; then the equation to be solved is

An+1 n
i0 — Wip 2X(‘Uz) n+l n+1
Ar (o8 + Q- Qnl (o1)
Collecting terms this gives
Uoo n+1 + Uo 1Qn+1 VoloQ?o + V011Qz 1> (92)
where
) 2x(w;) A
151
i 2x(w;)An
Uy, = ——5—, (94)
P1
i QX(Wi)AU
Voo = 1- ) ) (95)
Pi
; 2x(w;)An
02 = —( ) (96)
.01

For the maximum radial point (p = pn) the finite difference expression is derived using
following procedures. To compensate for the extended boundary point py,; the following
assumption are made. First, py4; is symmetrically placed around py, i.e.

PN+1 = PN = PN — PN-1, PN+1 = 2PN — PN-1- (97)

Second, the value of the function Q:‘ ~n+1 18 determined by linear interpolation through the
points py_1, pn and py41,

Qini1 — Qv Qv — QN1

= 2 ! R i 2 i i N—-1- 98
PN+1 — PN PN — PN-1 N“ Q N Q N-1 (98)
Then the difference equation simplifies to
UIiV,N-l i 1+UNN N = VNN Q7 N—1+VNNQzNa (99)
where
: 2x(w;)An )
NN - , 100
N 2pn(pn — pN-1) (100)
: 2x(w;)An
; = 1- , 101
mr 2on(pN — pN-1) (1on
A 2x(wi)An
Vi ne — , 102
=t 2pn (PN — PN-1) (102)
, 2x(w;)A
Vie = 1+ () An (103)

2on(pN — prn-1)
12



Now using the three finite difference expressions for the boundary points and the interior

points, we can rewrite the expressions as a tri-diagonal matrix equation.

Ui@z+1 — f/i “Z’ QZ+1 — (01')—11“/1' "Z, (104)

where matrices U’ and V¢ are tri-diagonal matrices which are determined by Egs. (80-85),
Eqs. (93-96), and Eqgs. (100-103). ;. is a column vector whose elements are {- - -, Q-1 Q%
~§tj +1>- -} Using a general matrix equation solver, we can easily solve the above equation.

7.2 Dispersion Operator

In the frequency domain, the dispersion operator is given by Eq. (50) and the differential
equation for dispersion is given as '

o “ -
= Dul)d (105)
The solution becomes
Qn+ An/2, p,w) = eFer+Ee-5) FQm, p,w). (106)

7.3 Nonlinear Opefator

The nonlinear operator is. solved in the time domain using the trapezoid rule and then
iterated until the algorithm converges. -

n+4 ! N ! AT] \J %
[ arRiem) = SHVQm) + Mae + an)). (107)

In the first iteration N[Q(n-+An)] is set equal to V [@(n)] to obtain an estimate for Q(n+An)
and the process is repeated until it converges. We consider a discrete time and*space grid,

Qm, o, 7) = Qn, p5,73) = Q- (108)

~

For N(n), we write

N (1) = ip| Q%[ (109)

‘The nonlinear part is comprised of simply multiplying the field in the time domain by the
exponential

+8 N v
els "C(n, T) = eézﬂN(”*A""”T)e%nN("’p’T)0(77: ps) (110)




7.4 Rate Equation

The rate equations are
BN 2 0RH .

To solve this equation, we con51der the following grid in the n — 7 plane where O is the
position of Q(n,, ;) and () is the position of R(7, AL, 7;-1). Before the pulse enters the RSA
material, all carriers are in the ground state. Therefore the initial condition for the carrier
density is

—

N(nn—l—l T_ ;) = (112)

O O O

0

For the propagation from Q(nn, ) to Q(n,, Tis1), we assume the average carrier density is
5 [N(nn__, Tisl )+N(nn+1 \Tixd 1)]. For the carrier excitation from N(nn+ 1,7, ) to N(nn+1 s Tigd 1),

we assume the average field is [Q (7, 7:)+Q(7n+1, 7:)]. The values Q(nn+1, Tz) and N(nn+1  Tivl 1)
are not determined before calculation. For the first iteration, Q(7,41,7:) is set equal to
Q (7, 7:). The rate equations and the pulse propagation equation are iterated until the
solutions converge. From the rate equation, we can get

2

R(7or1:Tid) = €xp (To/ "+ {G+alAlIQPH} d ) R(y1,7im1)

2

= exp GTOAT—i—}‘IaIAOIQTO/'+I |Q|2d7) (nn+1, T;_1)

_‘2'

Q

Q

exp (GTyAT+ HalAdPToA 2 {1Q0m, 7 P+1Q0n1, )P} ) Ry 7is)
e
k!

if: (R (,43.7), (113)

where R = GToAT + Ha|Ao*ToATL {|Q(m, )2 + |Q(hns1,7:)[?}. We should choose Ar
such that R
|R| < 1. (114)

In our calculation, we keep terms up to k = 2.
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8 ITERATION

The rate equations and the wave equation are given by

. R B £

3 = Ty {G“HYIAOI Q| H}N, (115)

0Q A ~ ST

3y = [DastDy+N+R.]0Q, (116)

If we consider only the N,, term in the wave equation, then
€

0Q _ o LyNr
87' - rsaQ - 9 G- N Q (117)

The solutions are
KOsy ) = B (TATC+ ToA Loy {{Qm, 6@, 80} H) Ny ), (118)
An_, (=
Qs ) ~ e (=51 (87,13, 7y) + 8y, 7)) Q). (119)

The k-th and (k+1)-th iterated solutions are

~

&'(k’(nm_;.,rﬂ.%)~exp(ToATG+ToATLdf Q0. 62 +1Q® (7, ) }H) RT3, 7is), (120)
Q") (1012, 1) ~ exp (—A—a Ry, 7o) + RO (1, zJrl)}) (1 t2)- (121)
Now consider the following errors
&‘(nn+%77-'i+ ) — &'(")(nnw, i+l) ~
ToArLgs > {IQ(%H; I~ 1% (nsa, t:) } N(k)(nn+1’7—z—%) (122)
Q1 1) > = |Q¥HD (1o, 1) ~
—An%fa- H - R(13,7:1)1Q0, &) {IQ0 11, 82 ~ 1Q® (sn, )2} . (123)

Then -
AQ(k-H)
AQ®)

where AQ*+Y = |Q(1n11, £:) P~ |Q® (1hnsr, ¢ :)|2. If the right hand-side of Eq. (127) is smaller
than 1, then the iteration improves the accuracy of the solution .

77 5 A
=220 B R 1,73 Q1) (124)
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9 SOLITON SOLUTION

To check the accuracy of our numerical method, we used the nonlinear Schrédinger equation
(NLS) which has analytic solutions. By comparing the numerical solution to the analytic
solution we verify the accuracy of our numerical method. The NLS equation is easily derived
from our nonlinear wave equation and given by

BU 18U )

Z'%-i-'z“gﬁ-i-lUIU—O (125)
For certain case, Eq. (128) solitons. The fundamental soliton is given as ¢

U(n,7) = sech(t)exp(in/2) (126)

The intensity is independent of propagation distance 7. Figure 3 shows the analytic solution
and the numerical solution of Eq. (128). In the numerical calculation, we used a time step
of 7 = 0.05 and a propagation step of én = 0.000314 for a total propagation distance of
3.14. The numerical solution agrees with the analytic solution yielding an error less than
0.5% for —2 < 7 < 2 as shown in Figure 4. The error can be reduced by choosing a smaller
propagation step and/or a smaller time step. In this calculation, we found that our numerical
methods describe the soliton propagation very accurately.

10 CONCLUSION

In this report we described a numerical method for short optical pulse propagation in nonlin-
ear media with RSA materials. Numerical solutions for soliton propagation are in excellent
agreement with analytical solutions. In our numerical method, higher order group velocity
dispersion terms, higher order nonlinear terms and the Raman term are easily incorporated
for ultra-short pulse propagation. Five-level model reverse saturable absorbers(RSA) show
optical limiting effect for appropriate input power intensities. For high power input pulse,
the output pulse power is decreased significantly. Using our numerical results, we can design
effective optical limiters for a given range of pulse powers.
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Figure 1: Schematic energy level for a chromophore. The electronic states are represented by
solid horizontal lines and the vibronic states are represented by dotted horizontal lines. S;
represents a singlet state and T; represents a triplet state. The photon absorption excitations
are represented by solid vertical lines, and the decay processes are represented by wavy lines.
The absorption coefficients o;; and the decay constants ki; are described in the text. The
physical values used for our calculations are: oo; = 2.4 x 1078¢m?, o1y = 3.0 x 10~ em?,
o34 = 4.8 X 10_17cm2, ki = 0.144723_1, koy = 1.0}78_1, ki3 = 77.8ms"1, k3o = 50.07’713—1,
ki3 = 1.0ps™!, and ky;, ko, k33 are due to vibrational decays which are assumed to be
instantaneous.
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Figure 2: Space-Time grid for pulse propagation. Squares represent coordinates where pulse
is calculated and circles represent coordinates where carrier densities are calculated.
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Figure 3: Analytic and numerical solution for the fundamental soliton propagation. The
solid line shows the analytic solution and the circles show the numerical solution.
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Figure 4: Relative error of and numerical solution for the fundamental soliton propagation.
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